Формирование полос непропускания в тонкопленочном петляющем микроволноводе из железо-иттриевого граната

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Исследованы эффекты, возникающие при распространении спиновых волн (СВ) в тонкопленочном петляющем микроволноводе, образованном из железо-иттриевого граната (ЖИГ). С помощью численного решения уравнения движения намагниченности Ландау–Лифшица–Гильберта проведено исследование спектров СВ, возбуждаемых и распространяющихся вдоль волноведущей структуры, образованной периодически повторяющимися сочленениями участков ЖИГ микроволновода под различными углами. Продемонстрировано, что в «зигзагообразной» структуре могут формироваться зоны непропускания в спектре. Из анализа амплитудно-частотных характеристик сделаны выводы о возможности управления количеством и глубиной зон непропускания с помощью вариации количества и углов наклона волноведущих секций. Полученные результаты могут быть использованы для расширения представлений о физических эффектах формирования полос непропускания в нерегулярных магнитных структурах и создания управляемых магнитным полем фильтров СВЧ сигнала.

Об авторах

В. А. Зюзин

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

Email: Zyuzinva@bk.ru
ул. Астраханская, 83, Саратов, 410012

А. В. Огнев

Сахалинский государственный университет

Email: Zyuzinva@bk.ru
ул. Ленина, 290, Южно-Сахалинск, 693000

А. В. Садовников

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

Автор, ответственный за переписку.
Email: Zyuzinva@bk.ru
ул. Астраханская, 83, Саратов, 410012

Список литературы

  1. Gubbiotti G., Barman A., Ladak S. et al. // J. Phys.: Cond. Matt. 2024. V. 37. № 14. Article No. 143502.
  2. Vedmedenko E.Y., Kawakami R.K., Sheka D.D. et al. // J Phys. D: Appl. Phys. 2020. V. 53. № 45. ArticleNo. 453001.
  3. Sander D., Valenzuel S.O., Makarov D. et al. // J Phys. D: Appl. Phys. 2017. V. 50. № 36. Article No. 363001.
  4. Kruglyak V.V., Demokritov S.O., Grundler D. // J Phys. D: Appl. Phys.2010. V. 43. № 26. Article No. 264001.
  5. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
  6. Vansteenkiste A., Van de Wiele B. // J. Magn. and Magn. Mater. 2011. V. 323. № 21. P. 2585.
  7. Vansteenkiste A., LeliaertJ., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  8. Hикитов С.А., Калябин Д.В., Лисенков И.В. и др. // Успехи физ. наук. 2015. Т. 185. № 10. С. 1099.
  9. Serga A.A., Chumak A.V., Hillebrands B. // J. Phys.: Appl. Phys. 2010. V. 43. № 26. P. 264002.
  10. Ustinov A.B., Lähderanta E., InoueM., Kalinikos B.A. // IEEE Magnetics Lett. 2019. V. 10. Article No. 5508204.
  11. Hикитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
  12. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
  13. O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  14. Stancil D.D., Prabhakar A. Spin Waves. Theory and Applications. Berlin: Springer, 2009.
  15. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025