Методы территориальной сейсмической защиты надземных сооружений и туннелей. Обзор
- Авторы: Топчий Н.Н.1
-
Учреждения:
- Московский государственный строительный университет
- Выпуск: Том 89, № 4 (2025)
- Страницы: 635-672
- Раздел: Статьи
- URL: https://rjeid.com/0032-8235/article/view/690758
- DOI: https://doi.org/10.31857/S0032823525040086
- EDN: https://elibrary.ru/vmlavl
- ID: 690758
Цитировать
Полный текст



Аннотация
В этой статье представлен обзор исследований по сейсмическим воздействиям на туннели и методам сейсмической защиты. Представлена информация о колебаниях грунтовых массивов, вызванных распространением поверхностных волн Рэлея и Рэлея–Лэмба, а также о методах снижения вибрационных воздействий на туннели и другие подземные сооружения с помощью волновых барьеров. Рассмотрены вопросы защиты окружающей среды от волновых воздействий внутри существующих туннелей.
Об авторах
Н. Н. Топчий
Московский государственный строительный университет
Автор, ответственный за переписку.
Email: topchiy_nn@mail.ru
Москва, Россия
Список литературы
- Assessing Vibration (a technical guideline). Department of Environment and Conservation. Sydney, N.S.W.: Dept. of Environ &Conserv. NSW, 2006. http://www.dec.nsw.gov.au/resources/vibrationguide0643.pdf
- Yousef B., Bertero V.V. Earthquake Engineering: from Engineering Seismology to Performance-Based Engineering. CRC Press, 2004. https://doi.org/10.1201/9780203486245
- Earthquake Engineering Research. Committee on Earthquake Engineering, Research Commission on Engineering and Technical Systems, National Research Council. Washington (D.C.): National Acad. Press, 1982.
- El-Naggar M.H.,Bentley K.J. Dynamic analysis for laterally loaded piles and dynamic p-y curve // Canadian Geotech. J. 2000. V. 37. № 6. P. 1166–1183. https://doi.org/10.1139/t00-058
- Javan M.R.M., Noorzad A., Namin M.L. Three-dimensional nonlinear finite element analysis of pile groups in saturated porous media using a new transmitting boundary // Int. J. for Numer &Anal. Methods in Geomech. 2008. V. 32. № 6. P. 681–699. https://doi.org/10.1002/NAG.642
- Lopez-Caballero F., Modaressi A., Razavi F., Modaressi H. Nonlinear numerical method for earthquake site response analysis Ι — elastoplastic cyclic model and parameter identification strategy // Bull. of Earthquake Engng. 2007. V. 5. № 3. P. 303–323. https://doi.org/10.1007/s10518-007-9032-7
- Gilbert R. Towards sustainable transportation // Organization for Economic Cooperation and Development. Conf. Proc. British Columbia, 1996.
- Hunt H.E.M. Measurement and Modeling of Traffic-Induced Ground Vibration // PhD Diss. Univ. of Cambridge, 1998.
- Watts G.R. The generation and propagation of vibration in various soils produced by the dynamic loading of load pavements // J. of Sound&Vibr. 1992. V. 156. № 2. P. 191–206. https://doi.org/10.1016/0022-460X(92)90692-Q
- French Train Hits 357 mph Breaking World Speed Record. Foxnews.com. 4 April 2007. Retrieved 11 Feb 2010.
- Yang Y.B., Hung H.H. Wave Propagation for Train-Induced Vibrations: A Finite/Infinite Element Approach. World Scientific, 2009. http://dx.doi.org/10.1142/7062
- Kuo K.A. Vibration from Underground Railways: Considering Piled Foundations and Twin Tunnels / PhD Diss. Univ. of Cambridge, 2010.
- Hiller D.M., Hope V.S. Groundborne vibration generated by mechanized construction activities // Proc. of the Inst. of Civil Engineers—Geotech. Enginng. 1998. V. 131. № 4. P. 223–232. https://doi.org/10.1680/igeng.1998.30714
- Braile L.W. Seismic waves and the slinky: a guide for teachers. West Lafayette, Dep. of Earth&Atmos. Sci. Purdue Univ., IN 47907–2051.
- Richart F.E., Hall J.R., Woods R.D. Vibrations of Soils and Foundations. Prentice-Hall, Inc., Englewwood Cliffs, New Jersey, 1970.
- Sheriff R.E., Geldart L.P. Exploration Seismology. Cambridge: Univ. Press, 1995. https://doi.org/10.1017/CBO9781139168359
- Woods R.D. Screening of surface waves in soils // J. of the Soil Mech.&Found. Div. Proc. ASCE, 1968. V. 94. № 4. P. 951–979.
- Woods R.D., Richart F.E. Screening of elastic surface waves by trenches // Int. Symp. on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, New Mexico, August 1967. https://dx.doi.org/10.7302/10212
- Kuznetsov S.V. Forbidden planes for Rayleigh waves // Quart. Appl. Math. 2002. V. 60. P. 87–97. http://dx.doi.org/10.1090/qam/1878260
- Miller G.F., Pursey H. On the partition of energy between elastic waves in a semi-infinite solid // Proc. of the Royal Soc. London. A. 1995. V. 233. P. 55–69. https://www.jstor.org/stable/99853
- Fidell S., Barber D., Schultz T. Updating a dosage-effect relationship for the prevalence of annoyance due to general transportation noise // J. of the Acoust. Soc. Amer. 1991. V. 89. P. 221–233. https://psycnet.apa.org/doi/10.1121/1.400504
- Fields J.M., Walker J.G. The response to railway noise in residential areas in Great Britain // J. of Sound&Vibr. 1982. V. 85. № 2. P. 177–255. https://doi.org/10.1016/0022-460X(82)90519-3
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng. 2020. V. 24. № 14. P. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech. 2021. V. 131. P. Paper ID 103808. https://doi.org/10.1016/j.compgeo.2020.103808
- Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math. 2004. V. 62. № 4. P. 749–766. http://dx.doi.org/10.1090/qam/2104272
- Dinges D., Pack F., Williams K. et al. Cumulative sleepiness, mood disturbance and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night // Sleep. 1997. V. 20. № 4. P. 267–277. https://dx.doi.org/10.1093/sleep/20.4.267
- Ferrara M., Gennaro L.D. How much sleep do we need? // Sleep Medicine Rev. 2001. V. 5. № 2. P. 155–179. https://doi.org/10.1053/smrv.2000.0138
- Brammer A.J. Human response to vibration and mechanical shock // Canadian Acoust. V. 2002. V. 30. № 3. P. 112–113.
- Kutz M. Standard Handbook for Biomedical Engineering&Design. New York: McGraw Hill, 2002.
- Mayers A. Vibration acceptance criteria // Austral. Bulk Handing Rev. 2009. P. 54–55.
- Andrew J., Wong E., Xi H.Y. China reports student toll for quake // New York Times. May 7, 2009.
- More than 4.8 million homeless in Sichuan quake: official // Relief Web. Agence France-Presse. May 16, 2008.
- DUAP. Assessment of Noise, Vibration and Blasting Impacts. EIS Manual. Sydney: Dep. of Urban Affairs&Planning, 1997.
- Jones C.J.C., Block J.R. Prediction of ground vibration from freight trains // J. of Sound&Vibr. 1996. V. 193. № 1. P. 205–213. https://doi.org/10.1006/jsvi.1996.0260
- Petyt M., Jones C.J.C. Modeling of ground-borne vibration from railways // in: Structural dynamics-EURODYN’99. vol. I. Rotterdam: Balkema; 1999. P. 79–87.
- Peplow A.T., Jones C.J.C., Petyt M. Surface vibration propagation over a layered elastic half-space with an inclusion // Appl. Acoust. 1999. V. 56. P. 283–296. https://doi.org/10.1016/S0003-682X(98)00031-0
- Kuznetsov S. V., Terentjeva E.O. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acous. Phys. 2015. V. 61(3). P. 356–367. https://doi.org/10.1134/S1063771015030112
- Kolsky H. Stress waves in solids // J. of Saund&Vibr. 1964. V. 1. № 1. P. 88–110. https://doi.org/10.1016/0022-460X(64)90008-2
- Rayleigh L. On waves propagated along the plane surface of an elastic solid // London Math. Soc. Proc. 1885. V. 17. P. 4–44. https://doi.org/10.1112/plms/s1-17.1.4
- Lamb H. On the propagation of tremors over the surface of an elastic solid // Philos. Trans. of the Royal Soc. London. Ser. A. 1903. V. 203. P. 1–42. https://doi.org/10.1098/rsta.1904.0013
- White R.M. Elastic wave scattering at a cylindrical discontinuity in a solid // J. of the Acoust. Soc. of Amer. 1958. V. 30 (8). P. 771–785. https://doi.org/10.1121/1.1909759
- Knopoff L. Scattering of compression waves by spherical obstacles // Geophys. 1959. V. 24. P. 30–39. https://doi.org/10.1190/1.1438562
- Knopoff L. Scattering of shear waves by spherical obstacles // Geophys. 1959. V. 24. P. 209–219. https://doi.org/10.1190/1.1438575
- Thau S.A., Pao Y.H. Diffractions of horizontal shear waves by a parabolic Cylinder and Dynamic Stress Concentrations // J. of Applied Mechanics 1966. 33. P. 785–792. https://doi.org/10.1115/1.3625183
- Thiruvenkatachar V.R., Viswanathan K. Dynamic response of an elastic half-space with cylindrical cavity to time-dependant surface traction over the boundary of the cavity // J. of Appl. Math.&Mech. 1965. V. 14. P. 541–572.
- Viswanathan K., Thiruvenkatachar V.R. Dynamic response of an elastic half-space with cylindrical cavity to time-dependent surface tractions over boundary of the cavity. II // Proc. of the Royal Soc. A. 1967. V. 300. P. 159–186.
- Trifunac M.D. Scattering of plane SH waves by a semi-cylindrical canyon // Earthquake Engng.&Struct. Dyn. 1972. №1(3). P. 267–281. https://doi.org/10.1002/eqe.4290010307
- Dudchenko A.V., Dias D., Kuznetsov S.V. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2021. V. 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
- Kuznetsov S.V. Appearing ZGV point in the first flexural branch of Lamb waves in multilayered plates // Comp. Struct. 2022. V. 290. Paper ID 115532. https://doi.org/10.1016/j.compstruct.2022.115532
- Boström A., Kristensson G. Elastic wave scattering by a three-dimensional inhomogeneity in an elastic half space // Wave Motion. 1980. V. 2. № 4. P. 335–353. https://doi.org/10.1016/0165-2125(80)90013-X
- Boström A., Kristensson G. Scattering of a pulsed Rayleigh wave by a spherical cavity in an elastic half space // Wave Motion. 1983. V. 5. № 2. P. 137–143. https://doi.org/10.1016/0165-2125(83)90030-6
- Lee V.W. A Note on the scattering of elastic plane waves by a hemispherical canyon // Earthquake Engng&Struct. Dyn. V. 66. P. 109–123. https://doi.org/10.1016/0261-7277(82)90003-1
- Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Rus. J. Nondestruct. Test. 2017. V. 53. № 4. P. 243–259. https://doi.org/10.1134/S1061830917040039
- Murillo C., Thorel L., Caicedo B. Ground vibration isolation with geofoam barriers: Centrifuge modeling // Geotextiles&Geomembr. 2009. V. 27. P. 423–434. https://doi.org/10.1016/j.geotexmem.2009.03.006
- Alzawi A., EI-Naggar M.H. Full scale experimental study on vibration scattering using open and in-filled (geofoam) wave barriers // Soil Dyn.& Earthquake Engng. 2011. V. 31. P. 306–317. https://doi.org/10.1016/j.soildyn.2010.08.010
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech. 2019. V. 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
- Kuznetsov S.V. Love waves in layered anisotropic media // JAMM. 2006. V. 70. P. 116–127. https://doi.org/10.1016/j.jappmathmech.2006.03.004
- Kuznetsov S.V. Love waves in nondestructive diagnostics of layered composites // Survey. Acoust. Phys. 2010. V. 56. P. 877–892. https://doi.org/10.1134/S1063771010060126
- Al-Hussaini T.M., Ahmad M. Simplified design for vibration screening by open and in-filled trenches // J. of Geotech.&Geoenviron. Engng. (ASCE). 1991. V. 117. № 1. P. 67–88. http://dx.doi.org/10.1061/(ASCE)0733-9410(1991)117:1(67)
- Motamed R., Itoh K., Hirose K. et al. Evaluation of wave barriers on ground vibration reduction through numerical modeling in ABAQUS // SIMULIA Customer Conf., 2009.
- Segol G., Lee C.Y., Abel J.F. Amplitude reduction of surface waves by trenches // J. of the Engng. Mech. Div. 1978. V. 104. № 3. P. 621–641. https://doi.org/10.1061/JMCEA3.0002365
- Fuyuki M., Matsumoto Y. Finite difference analysis of Rayleigh wave scattering at a trench // Bull. of the Seismol. Soc. of Amer. 1980. V. 70. № 6. P. 2051–2069. https://doi.org/10.1785/BSSA0700062051
- Emad K., Manolis. G.D. Shallow trenches and propagation of surface waves // J. of Engng. Mech. 1985. V. 111. № 2. P. 279–282. http://dx.doi.org/10.1061/(asce)0733-9399(1985)111:2(279)
- Beskos D., Dasgupta G., Vardoulakis I. Vibration isolation using open or filled trenches. Pt. 1: 2-D homogeneous soil // Comput. Mech. 1986. V. 1. P. 43–63. https://doi.org/10.1007/BF00298637
- Leung K., Beskos D., Vardoulakis I. Vibration isolation using open or filled trenches. Pt. 3: 2-D nonhomogeneous soil // Comput. Mech. 1990. V. 7. P. 137–48. https://doi.org/10.1007/BF00298637
- Yang Y.B., Hung H.H. A parametric study of wave barriers for reduction of train-induced vibrations // Int. J. for Numer. Methods in Engng. 1997. V. 40. P. 3729–3747. https://doi.org/10.1002/(SICI)1097-0207(19971030)40:20%3C3729::AID-NME236%3E3.0.CO;2-8
- Al-Hunaidi M.O., Rainer J.H. Remedial measures for traffic-induced vibrations at a residential site. Π. FEM simulations // J. of the Canadian Acoust. Assoc. 1991. V. 19. № 2. P. 11–20.
- Adam M., Estorff O.V. Reduction of train-induced building vibrations by using open and filled trenches // Computer&Struct. 2005. V. 83. P. 11–24. https://doi.org/10.1016/j.compstruc.2004.08.010
- Estorff O.V., Prabucki M.J. Dynamic response in the time domain by coupled boundary and finite elements // Comput. Mech. 1990. V. 6. № 1. P. 35–46. https://doi.org/10.1007/BF00373797
- Itoh K., Koda M., Lee K. et al. Centrifugal simulation of wave propagation using a multiple ball dropping system // Int. J. of Phys. Modeling in Geotech. 2002. V. 2. № 2. P. 33–51. http://dx.doi.org/10.1680/ijpmg.2002.020203
- Itoh K., Zeng X., Koda M. et al. Centrifuge simulation of wave propagation due to vertical vibration on shallow foundations and vibration attenuation countermeasures // J. of Vibr.&Control. 2005. V. 11. P. 781–800. https://doi.org/10.1177/1077546305054150
- Liao S., Sangrey D.A. Use of piles as isolation barriers // J. of the Geotech. Engng. Div. 1978. V. 104. № 9. P. 1139–1152. https://doi.org/10.1061/AJGEB6.0000684
- Wass G. Linear Two-Dimensional Analysis of Soil Dynamics Problems in Semi-Infinite Layered Media / Ph. D. Thesis, univ. of California, Berkeley (CA), 1972. https://doi.org/10.4236/jamp.2014.24002
- Dolling H.J. Schwingungsisolierung von Bauwerken durch tiefe auf geeignete Weise stabilisierte // Schiltze. VDI-Berichte 1965. V. 88. S.3741. (in German)
- Neumeuer H. Untersuchungen uber die Abschirmung eines bestehenden Gebaudes gegen Erschutterungen beim Bau und Betrieb einer U-Bahnstrecke // Baumaschine&Bautechnik-10. Jahrgang, Heft 1963. No. 1. P. 23–29. (in German)
- McNeill R.L., Margason B.E., Babcock F.M. The role of soil dynamics in the design of stable test pads // Proc. Guidance&Control Conf. 1965. P. 366–375. https://doi.org/10.2514/6.1965-1239
- Beskos D.E., Dasgupta G., Vardoulakis I.G. Vibration isolation of machine foundations // Vibr. Probl. in Geotech. Engng. ASCE. 1985. P. 138–151. https://doi.org/10.1016/0148-9062%2887%2992624-6
- Emad K., Manolis G.D. Shallow trenches and propagation of surface waves // J. of Engng. Mech. (ASCE). 1985. V. 111. № 2. P. 279–282. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:2(279)
- Davies M.C.R. Dynamic soil structure interaction resulting from blast loading // Centrifuge 94, Balkema, Rotterdam, 1994. P. 319–324. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6347673
- Wang J.G., Sun W., Anand S. Numerical investigation on active isolation of ground shock by soft porous layers // J. of Sound&Vibr. 2008. V. 321. P. 492–509. https://doi.org/10.1016/j.jsv.2008.09.047
- Avilés J.,Sánchez-Sesma F.J. Foundation isolation from vibrations using piles as barriers // J. of Engng. Mech. ASCE. 1988. V. 114. № 11. P. 1854–1870. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1854)
- El-Naggar M.H., Chehab A.G. Vibration barriers for shock-producing equipment // Canadian Geotech. J. 2005. V. 42. P. 297–306. https://doi.org/10.1139/t04-067
- Pflanz G., Hashimoto K., Chouw N. Reduction of structural vibrations induced by a moving load // J. of Appl. Mech. 2002. V. 5. P. 555–563. http://dx.doi.org/10.2208/journalam.5.555
- Lysmer J., Waas G. Shear waves in plane infinite structures // J. of the Engng. Mech. Div. ASCE. 1978. V. 98. № 1. P. 85–105. https://doi.org/10.1061/JMCEA3.0001583
- Kattis S.E., Polyzos D., Beskos D.E. Vibration isolation by a row of piles using a 3-D frequency domain BEM // Numer. Methods in Engng. 1999. V. 46. № 5. P. 713–728. https://doi.org/10.1002/(SICI)1097-0207(19991020)46:5%3C713::AID-NME693%3E3.0.CO;2-U
- Tsai P.H., Feng Z.Y., Jen T.I. Three-dimensional analysis of the screening effectiveness of hollow pile barriers for foundation-induced vertical vibration // Computers&Geotech. 2008. V. 35. № 3. P. 489–499.
- Dix A. Terrorism — the new challenge for old tools // Tunn.&Tunn. Int. 2004. V. 36. № 10. P. 41–43.
- Jenkins B.M. Protecting Public Surface Transportation against Terrorism and Serious Crime: An Executive Overview. San José: The Mineta Transportation Inst., Coll. of Business, San José State Univ., 2001.
- Blue Ribbon Panel on Bridge and Tunnel Security. Recommendations for bridge and tunnel security, 2003.
- Choi S., Wang J., Munfakh G., Dwyre E. 3D Nonlinear blast model analysis for underground structures // in: Proc. of Geocongress. 2006. P. 206. https://doi.org/10.1061/40803(187)206
- Lu Y., Wang Z., Chong K. A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations // Soil Dyn.&Earthquake Engng. 2005. V. 25. P. 275–288. https://doi.org/10.1016/j.soildyn.2005.02.007
- Gui M.W., Chien M.C. Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport–a parametric study // Geotech.&Geolog. Engng. 2006. V. 24. P. 227–248. https://doi.org/10.1007/s10706-004-5723-x
- Liu H.B. Dynamic analysis of subway structures under blast loading // Geotech.&Geolog. Engng. 2009. V. 27. P. 699–711. https://doi.org/10.1007/s10706-009-9269-9
- Bian K., Liu D., Jia J. Investigation and analysis of effect of engineering blasting on railway tunnel failure // in: Feng Colloquium on Engineering Blasting. Beijing: Metal. Industry Press, 1988. P. 199–205. (in Chinese)
- Berta G. Blasting-induced vibration in tunneling // Tunnel&Undergr. Space Technol. 1994. V. 9. P. 175–187. https://doi.org/10.1016/0886-7798(94)90029-9
- Liang Q.G., Li J., Li D.W., Ou E.F. Effect of blast-induced vibration from new railway tunnel on existing adjacent railway tunnel in Xinjiang, China // Rock Mech.&Rock Engng. 2012. V. 46. № 1. P. 19–39. http://dx.doi.org/10.1007/s00603-012-0259-5
- De Bremaecker J.Cl. Transmission and reflection of Rayleigh waves at corners // Geophys. 1958. V. 23. № 2. P. 253–266. https://doi.org/10.1190/1.1438465
- Haupt W.A. Isolation of vibration by concrete core walls // Proc. of 9th Int. Conf. of Soil Mech.&Found. Engng., 2, Japan. Soc. of Soil Mech.&Foundation Engng. 1977. P. 251–256.
- Haupt W.A. Surface waves in nonhomogeneous half-space // in: Dynamical Methods in Soil and Rock Mechanics / Ed. by Prange B. Rotterdam: Balkema, 1978. P. 335–367.
- Li J.C., Li H.B., Ma G.W., Zhou Y.X. Assessment of underground tunnel stability to adjacent tunnel explosion // Tunnel.&Undergr. Space Technol. 2013. V. 35. P. 227–234. https://doi.org/10.1016/j.tust.2012.07.005
- Juang N., Zhou C.B. Blasting vibration safety criterion for a tunnel liner structure // Tunnel.&Undergr. Space Technol. 2012. V. 32. P. 52–57. https://doi.org/10.1016/j.tust.2012.04.016
- Yang Y.B., Xie X.Y., Wang R.L. Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion // J. of Rock Mech.&Geotech. Engng. 2010. V. 2. № 4. P. 373–384. https://doi.org/10.3724/SP.J.1235.2010.00373
- Hatzigeorgiou G.D., Beskos D.E. Soil-structure interaction effects on seismic in elastic analysis of 3-Dtunnels // Soil Dyn.&Earthquake Engng. 2010. V. 30. P. 851–861. https://doi.org/10.1016/j.soildyn.2010.03.010
- Wang D.L. Seismic isolation effect of a tunnel covered with expanded polystrene geofoam // Advan. Mater. Res. 2011. V. 194–196. P. 1943–1946. http://dx.doi.org/10.4028/www.scientific.net/AMR.194-196.1943
- Shahnazari H., Esmaeili M., Ranjbar H.H. Simulating the effects of projectile explosion on a jointed rock mass using 2D DEM: a case study of ardebilmianeh railway tunnel // Int. J. of Civil Engng. 2010. V. 8. № 2. P. 125–133.
- Huang S., Chen W.Z., Yang J.P. et al. Research on earthquake-induced dynamic responses and aseismic measures for underground engineering // Chinese J. of Rock Mech.&Engng. 2009. V. 28. P. 483–490. (in Chinese)
- Israilov, M.S. Solution of the External Pochhammer–Chree Problem and Bending Seismic Vibrations of the Pipeline in Infinite Elastic Continuum // Mech. Solids. 2023. v. 5. p. 26–37. https://doi.org/10.3103/S0025654422700042
- Israilov, M.S., Nosov, S.E. On Seismic Oscillations of Semi-Infinite Underground Pipeline // Moscow Univ. Mech. Bull. 2022. v. 77. p. 146–150. https://doi.org/10.3103/S0027133022050041
- Kopp J.W., Siskind D.E. Effects of millisecond-delay intervals on vibration and airblast from surface coal mine blasting // Report of Investigation 9026, Bureau of Mines, United States Department of the Interior, 1986.
Дополнительные файлы
