Using the Accelerated Convergence Method for Solving the Singular Sturm–Liouville Problem
- Autores: Nesterov S.V.1
- 
							Afiliações: 
							- Ishlinsky Institute for Problems in Mechanics of the RAS
 
- Edição: Volume 87, Nº 5 (2023)
- Páginas: 757-764
- Seção: Articles
- URL: https://rjeid.com/0032-8235/article/view/675095
- DOI: https://doi.org/10.31857/S0032823523050119
- EDN: https://elibrary.ru/VGZAYO
- ID: 675095
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This article is dedicated to the memory of L.D. Akulenko, with whom the author of the article worked for more than 40 years. Within the framework of the accelerated convergence method developed jointly, a number of classes of problems related to the Sturm–Liouville problems were solved. Based on the research results, several dozen articles and a generalizing monograph [1] were published. In this paper, we describe the adaptation of the method to solving singular Sturm–Liouville problems.
Palavras-chave
Sobre autores
S. Nesterov
Ishlinsky Institute for Problems in Mechanics of the RAS
							Autor responsável pela correspondência
							Email: bayd@ipmnet.ru
				                					                																			                												                								Russia, Moscow						
Bibliografia
- Akulenko L.D., Nesterov S.V. High-Precision Methods in Eigenvalue Problems and Their Applications. Boca Raton: Chapman&Hall/CRC Press, 2005. 255 p.
- Ratneswar S.G., Ranjit Gh. Method of perturbation applied to the vibration problem of a circular membrane of varying density // JASA, 1964, vol. 36, no. 6, pp. 1118–1120.
- Sretensky L. The Theory of Wave Motion of Fluid. Moscow: Nauka, 1977. 815 p. (in Russian)
- Nesterov S.V., Baidulov V.G. Using the accelerated convergence method in singular Sturm–Liouville problems // Sb. Mater. 13th Int. Conf. – School of Young Scientists “Waves and Vortices in Complex Media”, Moscow, Nov. 30 – Dec. 02, 2022, pp. 194–195.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


