Problem of Three-Point Bending of an Elastic Beam from Porous Metal
- Autores: Annin B.D.1, Sadovsky V.M.2, Sadovskaya O.V.2
- 
							Afiliações: 
							- Lavrentyev Institute of Hydrodynamics, SB RAS
- Institute of Computational Modelling, SB RAS
 
- Edição: Volume 88, Nº 2 (2024)
- Páginas: 217-227
- Seção: Articles
- URL: https://rjeid.com/0032-8235/article/view/675064
- DOI: https://doi.org/10.31857/S0032823524020043
- EDN: https://elibrary.ru/XUTZSL
- ID: 675064
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Using numerical methods, we construct a solution to a physically and geometrically nonlinear problem of three-point bending of an elastic beam, made of porous metal, with rectangular cross-section. Unlike the classical version of the problem for a homogeneous beam, the heterogeneity over the cross-section due to material compaction because of the collapse of pores, which occurs in the compression zone at sufficiently large deflections, is taken into account. To describe the elastic state of a porous metal, the stress – strain diagram of a bimodular medium is used. The results of computations of strong bending of a beam, made of the low-porosity aluminum foam, are presented. These results demonstrate the difference between the obtained solution and similar solutions for beams, made of homogeneous porous and compacted material.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
B. Annin
Lavrentyev Institute of Hydrodynamics, SB RAS
							Autor responsável pela correspondência
							Email: bdannin@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
V. Sadovsky
Institute of Computational Modelling, SB RAS
														Email: sadov@icm.krasn.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk						
O. Sadovskaya
Institute of Computational Modelling, SB RAS
														Email: o_sadov@icm.krasn.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk						
Bibliografia
- Gibson L.J. Mechanical behavior of metallic foams // Annu. Rev. Mater. Sci., 2000, vol. 30, no. 1, pp. 191–227.
- Banhart J. Manufacturing routes for metallic foams // JOM, 2000, vol. 52, no. 12, pp. 22–27.
- Ashby M.F. Plastic deformation of cellular materials // Encyclopedia of Materials: Science and Technology, pp. 7068–7071. Oxford: Pergamon, 2001.
- Leushin I.O., Grachev A.N., Nazarov V.N., Gorokhov P.A. Aluminum foam is a promising material for the production of cast products for responsible purposes // The Theory&Proc. Engng. of Metall. Prod., 2020, vol. 35, no. 4, pp. 35–38. (in Russian)
- Prokhorchuk E.A., Leonov A.A., Vlasova K.A. et al. Prospects for the use of hot isostatic pressing in cast aluminum alloys (review) // Proc. VIAM, 2021, vol. 106, no. 12, pp. 21–30. (in Russian)
- Schaedler T.A., Jacobsen A. J., Torrents A. et al. Ultralight metallic microlattices // Science, 2011, vol. 334, no. 6058, pp. 962–965.
- Annin B.D. Mechanics of Deformable Solids: Sel. works. Novosibirsk: SB RAS, 2022. 288 p. (in Russian)
- Garcia-Avila M., Portanova M., Rabiei A. Ballistic performance of composite metal foams // Compos. Struct., 2015, vol. 125, pp. 202–211.
- Czekanski A., Elbestawi M.A., Meguid S.A. On the FE modeling of closed-cell aluminum foam // Int. J. Mech. Mater. Des., 2005, vol. 2, no. 1–2, pp. 23–34.
- Völlmecke C., Todt M., Yiatros S. Buckling and postbuckling of architectured materials: A review of methods for lattice structures and metal foams // Compos. Adv. Mater., 2021, vol. 30, pp. 1–12.
- Sadovskii V.M., Sadovskaya O.V. Analyzing the deformation of a porous medium with account for the collapse of pores // J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 5, pp. 808–818.
- Sadovskii V.M., Sadovskaya O.V., Luk’yanov A.A. Radial expansion of a cylindrical or spherical cavity in an infinite porous medium // J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 4, pp. 689–700.
- Rabotnov Yu.N. Mechanics of Deformable Solids. Moscow: Nauka, 1979. 744 p. (in Russian)
- Sadovskaya O., Sadovskii V. Mathematical Modeling in Mechanics of Granular Materials. Ser.: Advanced Structured Materials, vol. 21. Heidelberg: Springer, 2012. 390 p.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







