Introduction of a Sodium-Binding Motif into Subunits a and c of Bacillus sp. PS3 Proton F-ATPase Does Not Result in Sodium Specificity of the Enzyme
- Autores: Bruman S.M.1,2, Litvin A.V.2,3, Lapashina A.S.1,2, Fenyuk B.A.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
 
- Edição: Volume 93, Nº 3 (2024)
- Páginas: 346-350
- Seção: SHORT COMMUNICATIONS
- URL: https://rjeid.com/0026-3656/article/view/655106
- DOI: https://doi.org/10.31857/S0026365624030119
- ID: 655106
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In bacteria F-type ATPase (F-ATPase) plays a key role in bioenergetics and couples ATP synthesis/hydrolysis with the transport of ions (H+ or Na+) across the membrane. The ion specificity of the enzyme is determined by the amino acid sequence of subunits c and а. Here, we introduced several mutations (7 in subunit c and 6 in subunit a) into F-ATPase of thermophilic bacterium Bacillus sp. PS3 in order to change the ion specificity of the enzyme from proton to sodium. The mutations did not affect the ATPase activity of the enzyme, but led to loss of proton conductivity and impaired the binding of subunit a to the c-subunit oligomer, rather than changed the ion specificity.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
S. Bruman
Lomonosov Moscow State University; Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
														Email: feniouk@belozersky.msu.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Litvin
Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences; Skolkovo Institute of Science and Technology
														Email: feniouk@belozersky.msu.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Lapashina
Lomonosov Moscow State University; Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences
														Email: feniouk@belozersky.msu.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
B. Fenyuk
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: feniouk@belozersky.msu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Bietenhader M., Martos A., Tetaud E., Aiyar R. S., Sellem C. H., Kucharczyk R., et al. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution // PLoS Genet. 2012. V. 8. Art. e1002876.
- Datsenko K. A., Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 6640–6645.
- Fillingame R. H. Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5 triphosphate energy-transducing system of Escherichia coli // J. Bacteriol. 1975. V. 124. P. 870–883.
- Lapashina A. S., Shugaeva T. E., Berezina K. M., Kholina T. D., Feniouk B. A. Amino acid residues β139, β189, and β319 modulate ADP-inhibition in Escherichia coli H+-FF-ATP synthase // Biochemistry (Moscow). 2019. V. 84. P. 407–415.
- Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type // Eur. J. Biochem. 1987. V. 168. P. 475–480.
- Mulkidjanian A. Y., Galperin M. Y., Makarova K. S., Wolf Y. I., Koonin E. V. Evolutionary primacy of sodium bioenergetics // Biol. Direct. 2008. V. 3. Art. 13. https://doi.org/10.1186/1745-6150-3-13
- Nishimura M., Ito T., Chance B. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation // Biochim. Biophys. Acta. 1962. V. 59. P. 177–182.
- Schneider E., Altendorf K. All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP Synthase (F1F0) // EMBO J. 1985. V. 4. P. 515–518.
- Suzuki T., Ueno H., Mitome N., Suzuki J., Yoshida M. F0 of ATP synthase is a rotary proton channel: obligatory coupling of proton translocation with rotation of c-subunit ring // J. Biol. Chem. 2002. V. 277. P. 13281–13285.
- Toei M., Noji H. Single-molecule analysis of F0F1-ATP synthase inhibited by N, N-dicyclohexylcarbodiimide // J. Biol. Chem. 2013. V. 288. P. 25717–25726.
- Zhang Y., Fillingame R. H. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c // J. Biol. Chem. 1995. V. 270. P. 87–93.
- Zubareva V. M., Lapashina A. S., Shugaeva T. E., Litvin A. V., Feniouk B. A. Rotary ion-translocating ATPases/ATP synthases: diversity, similarities, and differences // Biochemistry (Moscow). 2020. V. 85. P. 1613–1630.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


