Laser Ablation of Styrene–Methacrylate Composites
- Autores: Buzin N.V.1, Mukhametova G.M.1, Kholuiskaya S.N.1, Kiselev A.V.1, Kalinichenko V.N.2, Gridnev A.A.1
- 
							Afiliações: 
							- Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
 
- Edição: Volume 57, Nº 1 (2023)
- Páginas: 73-79
- Seção: ЛАЗЕРНАЯ ХИМИЯ
- URL: https://rjeid.com/0023-1193/article/view/661533
- DOI: https://doi.org/10.31857/S0023119323010023
- EDN: https://elibrary.ru/DDSTZI
- ID: 661533
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Various styrene–methacrylate composites with mineral fillers have been studied as a substrate for the deposition of copper tracks on surfaces after laser ablation. It has been revealed that both insufficient laser heating of the substrate with applied varnish and its overheating have a negative effect on chemical copper plating. The use of crosslinked styrene–methacrylate polymers makes it possible to achieve stable copper plating of the laser-treated surface of the varnish-coated substrate. It has been shown that with an appropriate selection of ablation parameters, finely divided minerals, such as talc, celadonite, aquamarine, shungite, chromia, and iron oxide (ocher), can be used as varnish filler for chemical copper plating of laser-treated parts of the substrate.
Palavras-chave
Sobre autores
N. Buzin
Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences
														Email: 99gridnev@gmail.com
				                					                																			                												                								Moscow, 119334 Russia						
G. Mukhametova
Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences
														Email: 99gridnev@gmail.com
				                					                																			                												                								Moscow, 119334 Russia						
S. Kholuiskaya
Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences
														Email: 99gridnev@gmail.com
				                					                																			                												                								Moscow, 119334 Russia						
A. Kiselev
Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences
														Email: 99gridnev@gmail.com
				                					                																			                												                								Moscow, 119334 Russia						
V. Kalinichenko
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: 99gridnev@gmail.com
				                					                																			                												                								Moscow, 119334 Russia						
A. Gridnev
Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: 99gridnev@gmail.com
				                					                																			                												                								Moscow, 119334 Russia						
Bibliografia
- Adelaar H. A method for plating a copper interconnection circuit on the surface of a plastic device. Pat. 2267184 EP. 2010.
- Heininger N. // J. Microwave. 2012. V. 6. № 1. P. 46.
- Huske M., Kickeilhaim J., Muller J., Eber G. // Mater. Sci. 2002. V. 38. № 8. P. 51.
- URL: https://www.lpkfusa.com/products/mid/articles_and_technical_papers/ сайт фирмы “LKPF”, 2021 (дата обращения: 23.08.2021).
- Goosey M. Laser-activated dielectric material and method for using the same in an electroless deposition process. Pat. 0212632 GB. 2003.
- Balzereit S., Proes F., Altstadt V., Emmelmann C. // Mater. Sci. 2018. V. 23. P. 347. doi: 10-1016/j-addma.2018.08.016
- Schrauwen B.A.G. Polycarbonate Composition for laser direct structuring. Pat. 3898808A1 EP. 2020.
- Yu Z., Wang J.H., Li Y., Li Y. // Polym. Eng. Sci. 2020.V. 60. № 4. P. 860. https://doi.org/10.1002/pen.25345
- Kim K., Lee J., Ryua S. Kim J. // RSC Advances. 2018. V. 8. № 18. P. 9933. https://doi.org/10.1039/c8ra00967h
- Jiratti T., Mavinkere R.S., Suchart S., Catalin I.P. // Polymers. 2020. V. 12. № 6. P. 1408. https://doi.org/10.3390/polym12061408
- Xu H., Zhang J., Feng J., Zhou T. // Ind. Eng. Chem. Res. 2021. V. 60. № 24. P. 8821. https://doi.org/10.1021/acs.iecr.1c01668
- Rytlewski P., Jagodzinski B., Karasiewicz I.N., Augustyn P., Kaczor D., Malinowski R., Szablinski K., Mazurkiewicz M., Moraczewski K. // Materials. 2020. V. 13. № 10. P 2224. https://doi.org/10.3390/ma13102224
- Zhang J., Zhou T., Wen L., Zhang A. // ACS App. Mater. Inter. 2016. V. 8. № 49. P. 33999. https://doi.org/10.1021/acsami.6b11305
- Zhang J., Zhou T., Wen Y. // ACS App. Mater. Inter. 2017. V. 9. № 10. P. 8996. https://doi.org/10.1021/acsami.6b15828
- Пивоваров Д.А., Голубчикова Ю.Ю., Ильин А.П. // Изв. Томск. политех. университета // 2012. Т. 321. № 3. С. 11.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




