Features of the Synthesis of Few-Layer Phosphorene Structures During Plasma Electrochemical Cleavage of Black Phosphorus
- Autores: Kochergin V.K.1, Manzhos R.A.1, Komarova N.S.1, Kotkin A.S.1, Krivenko A.G.1, Krushinskaya I.N.2, Pelmenyov A.A.2
- 
							Afiliações: 
							- Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
- Branch of N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
 
- Edição: Volume 58, Nº 3 (2024)
- Páginas: 216-220
- Seção: PLASMA CHEMISTRY
- URL: https://rjeid.com/0023-1193/article/view/661347
- DOI: https://doi.org/10.31857/S0023119324030069
- EDN: https://elibrary.ru/UUGJUA
- ID: 661347
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A comparative study of the emission spectra of cathode electrolysis plasma during plasma electrochemical cleavage of black phosphorus and graphite under maximally identical experimental conditions has been carried out. A significantly lower concentration of active intermediates (OH radicals and O atoms) in the electrolysis plasma during the cleavafe of black phosphorus was found compared with a graphite electrode. It is assumed that this effect is due to a significantly higher rate of interaction of these intermediates with synthesized phosphorene structures than with graphene-like particles. This is confirmed by the detection of a much higher oxygen content in the products of black phosphorus cleavage than in synthesized carbon nanoparticles.
Texto integral
 
												
	                        Sobre autores
V. Kochergin
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
R. Manzhos
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
N. Komarova
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
A. Kotkin
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
A. Krivenko
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
I. Krushinskaya
Branch of N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
A. Pelmenyov
Branch of N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
Bibliografia
- Tiouitchi G., El Manjli F., Mounkachi O. et al. // Jordan J. Phys. 2020. V. 13. P. 149.
- Zhang Y., Jiang Q., Lang P. et al. // J. Alloys Compd. 2021. V. 850. P. 156580.
- Goswami A., Gawande M.B. // Front. Chem. Sci. Eng. 2019. V. 13. P. 296.
- Shu C., Zhou J., Jia Z. et al. // Chem. Eur. J. 2022, V. 28. P. e202200857.
- Srivastava R., Nouseen S., Chattopadhyay J. et al. // Energy Technol. 2021. V. 9. P. 2000741.
- Valappi M.O., Alwarappan S., Pillai V.K. // Nanoscale. 2022. V. 14. P. 1037.
- Xue X-X., Shen S., Jiang X. et al. // J. Phys. Chem. Lett. 2019. V. 10. P. 3440.
- Wang Y., He M., Ma S., Yang C. et al. // J. Phys. Chem. Lett. 2020. V. 11. P. 2708.
- Kochergin V.K., Manzhos R.A., Komarova N.S. et al. // High Energ. Chem. 2022. V. 56. P. 487.
- Krivenko A.G., Manzhos R.A., Kochergin V.K. et al. // High Energ. Chem. 2019. V. 53. P. 254.
- Kramida A., Ralchenko Yu., Reader J., NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9), https://physics.nist.gov/asd
- Hubner K.P., Herzberg G. Molecular Spectra and Molecular Structure, V. IV: Constants of Diatomic Molecules. New York: Van Northland, 1979. parts 1, 2.
- Очкин В.Н. Спектроскопия низкотемпературной плазмы. М.: Физматлит, 2006.
- Бобровников С.М., Горлов Е.В., Жарков В.И., Сафьянов А.Д. // Оптика атмосферы и океана. 2022. Т. 35. № 8. С. 613.
- Belkin P.N., Kusmanov S.A. // Surf. Eng. Appl. Electrochem. 2021. V. 57. №. 1. P. 19.
- Dittrich K., Fuchs H. // J. Anal. Atom. Spectrom. 1990. V. 5. P. 39.
- Ambrosi A., Bonanni A., Pumera M. // Nanoscale. 2011. V. 3. № 5. P. 2256.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



