Взаимосвязь микроРНК с транспозонами в развитии остеоартрита
- Авторы: Мустафин Р.Н.1, Хуснутдинова Э.К.2
-
Учреждения:
- Башкирский государственный медицинский университет
- Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
- Выпуск: Том 61, № 1 (2025)
- Страницы: 24-37
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjeid.com/0016-6758/article/view/686163
- DOI: https://doi.org/10.31857/S0016675825010023
- EDN: https://elibrary.ru/VFLMDB
- ID: 686163
Цитировать
Аннотация
Согласно проведенным GWAS, остеоартрит ассоциирован с более 100 различными SNP, большинство из которых локализованы в интронных и межгенных областях, где расположены гены транспозонов и произошедших от них некодирующих РНК. В ряде исследований определена также активация ретротранспозонов в тканях суставов и в периферической крови пациентов с остеоартритом. Сделано предположение о влиянии на этиопатогенез остеоартрита активированных транспозонов, вызывающих старение и связанное с ним воспаление. Для подтверждения данной гипотезы проведен поиск данных об изменении экспрессии специфических микроРНК, произошедших от мобильных генетических элементов при старении и остеоартрите. В результате найдено 23 таких микроРНК, участие которых в развитии болезни связано с воздействием на гены и сигнальные пути регуляции пролиферации и апоптоза клеток, воспалительные и метаболические процессы, механизмы деградации хряща. Изменение экспрессии данных микроРНК свидетельствует о том, что эпигенетические механизмы старения вовлечены в этиопатогенез остеоартрита вследствие патологической активации транспозонов, комплементарных последовательностям некодирующих РНК, произошедших от них в эволюции.
Ключевые слова
Полный текст

Об авторах
Р. Н. Мустафин
Башкирский государственный медицинский университет
Автор, ответственный за переписку.
Email: ruji79@mail.ru
Россия, Уфа
Э. К. Хуснутдинова
Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
Email: ruji79@mail.ru
Россия, Уфа
Список литературы
- GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021 // Lancet Rheumatol. 2023. V. 5. e508–e522. https://doi.org/10.1016/S2665-9913(23)00163-7
- Boer C.G., Hatzikotoulas K., Southam L. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations // Cell. 2021. V. 184. P. 4784–4818.e17. https://doi.org/10.1016/j.cell.2021.07.038
- Faber B.G., Frysz M., Boer C.G. et al. The identification of distinct protective and susceptibility mechanisms for hip osteoarthritis: Findings from a genome-wide association study meta-analysis of minimum joint space width and Mendelian randomisation cluster analyses // EBioMedicine. 2023. V. 95. https://doi.org/10.1016/j.ebiom.2023.104759
- Chen X., Wu Q., Cao X. et al. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis // Int. Immunopharmacol. 2022. V. 112. https://doi.org/10.1016/j.intimp.2022.109228
- Jiang Y., Shen Y., Ding L. et al. Identification of transcription factors and construction of a novel miRNA regulatory network in primary osteoarthritis by integrated analysis // BMC Musculoskelet. Disord. 2021. V. 22. P. 1008. https://doi.org/10.1186/s12891-021-04894-2
- Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis // Osteoarthritis Cartilage. 2022. V. 30. P. 184–195. https://doi.org/10.1016/j.joca.2021.04.020
- Vos T., Flaxman A.D., Naghavi M. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010 // Lancet. 2012. V. 380. P. 2163–2196. https://doi.org/10.1016/S0140-6736(12)61729-2
- De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. P. 73–78.
- Gorbunova V., Seluanov A., Mita P. et al. The role of retrotransposable elements in ageing and age-associated diseases // Nature. 2021. V. 596. P. 43–53. https://doi.org/10.1038/s41586-021-03542-y
- Bendiksen S., Martinez-Zubiavrra I., Tümmler C. et al. Human endogenous retrovirus W activity in cartilage of osteoarthritis patients // Biomed. Res. Int. 2014. V. 2014. https://doi.org/10.1155/2014/698609
- Teerawattanapong N., Udomsinprasert W., Ngarmukos S. et al. Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis // Heliyon. 2019. V. 5. https://doi.org/10.1016/j.heliyon.2019.e01774
- Lee D.H., Bae W.H., Ha H. et al. The human PTGR1 gene expression is controlled by TE-derived Z-DNA forming sequence cooperating with miR-6867-5p // Sci. Rep. 2024. V. 14. P. 4723. https://doi.org/10.1038/s41598-024-55332-x
- Conley A.B., Jordan I.K. Cell type-specific termination of transcription by transposable element sequences // Mob. DNA. 2012. V. 3. P. 15. https://doi.org/10.1186/1759-8753-3-15
- Daniel C., Behm M., Öhman M. The role of Alu elements in the cis-regulation of RNA processing // Cell. Mol. Life Sci. 2015. V. 72. P. 4063–4076. https://doi.org/10.1007/s00018-015-1990-3
- Wei G., Qin S., Li W. et al. MDTE DB: A database for microRNAs derived from Transposable element // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. V. 13. P. 1155–1160. https://doi.org/10.1109/TCBB.2015.2511767
- Chen J., Chen S., Cai D. et al. The role of Sirt6 in osteoarthritis and its effect on macrophage polarization // Bioengineered. 2022. V. 13. P. 9677–9689. https://doi.org/10.1080/21655979.2022.2059610
- Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age // Nat. Commun. 2014. V. 5. P. 5011. https://doi.org/10.1038/ncomms6011
- Zhou F., Mei J., Han X. et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κ B/MAPK signaling and protecting chondrocytes // Acta. Pharm. Sin. B. 2019. V. 9. P. 973–985. https://doi.org/10.1016/j.apsb.2019.01.015
- Saetan N., Honsawek S., Tanavalee S. et al. Association of plasma and synovial fluid interferon-γ inducible protein-10 with radiographic severity in knee osteoarthritis // Clin. Biochem. 2011. V. 44. P. 1218–1222. https://doi.org/10.1016/j.clinbiochem.2011.07.010
- Мустафин Р.Н., Хуснутдинова Э.К. Некодирующие части генома как основа эпигенетической наследственности // Вавил. журн. генетики и селекции. 2017. V. 21. P. 742–749.
- Lu F., Liu P., Zhang Q. et al. Association between the polymorphism of IL-17A and IL-17F gene with knee osteoarthritis risk: A meta-analysis based on case-control studies // J. Orthop. Surg. Res. 2019. V. 14. P. 445. https://doi.org/10.1186/s13018-019-1495-0
- Budhiparama N.C., Lumban-Gaol I., Sudoyo H. Interleukin-1 genetic polymorphisms in knee osteoarthritis: What do we know? A meta-analysis and systematic review // J. Orthop. Surg. (Hong Kong). 2022. V. 30. https://doi.org/10.1177/23094990221076652
- Deng X., Ye K., Tang J., Huang Y. Association of rs1800795 and rs1800796 polymorphisms in interleukin-6 gene and osteoarthritis risk: Evidence from a meta-analysis // Nucleosides Nucleotides Nucleic Acids. 2023. V. 42. P. 328–342. https://doi.org/10.1080/15257770.2022.2147541
- Rodriguez-Fontenla C., Calaza M., Evangelou E. et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies // Arthritis Rheumatol. 2014. V. 66. P. 940–949. https://doi.org/10.1002/art.38300
- Liu Y., Lu T., Liu Z. et al. Six macrophage-associated genes in synovium constitute a novel diagnostic signature for osteoarthritis // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.936606
- Yang L., Chen Z., Guo H. et al. Extensive cytokine analysis in synovial fluid of osteoarthritis patients // Cytokine. 2021. V. 143. https://doi.org/10.1016/j.cyto.2021.155546
- Pan L., Yang F., Cao X. et al. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis // Front. Endocrinol (Lausanne). 2023. V. 14. https://doi.org/10.3389/fendo.2023.1144258
- Xu J., Chen K., Yu Y. et al. Identification of immune-related risk genes in osteoarthritis based on bioinformatics analysis and machine learning // J. Pers. Med. 2023. V. 13. P. 367. https://doi.org/10.3390/jpm13020367
- Cheng P., Gong S., Guo C. et al. Exploration of effective biomarkers and infiltrating Immune cells in Osteoarthritis based on bioinformatics analysis // Artif. Cells. Nanomed. Biotechnol. 2023. V. 51. P. 242–254. https://doi.org/10.1080/21691401.2023.2185627
- Li J., Wang G., Xv X. et al. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1134412
- Grandi F.C., Bhutani N. Epigenetic therapies for osteoarthritis // Trends. Pharmacol. Sci. 2020. V. 41. P. 557–569. https://doi.org/10.1016/j.tips.2020.05.008
- Knights A.J., Redding S.J., Maerz T. Inflammation in osteoarthritis: The latest progress and ongoing challenges // Curr. Opin. Rheumatol. 2023. V. 35. P. 128–134.
- Zhang J., Zhang S., Zhou Y. et al. KLF9 and EPYC acting as feature genes for osteoarthritis and their association with immune infiltration // J. Orthop. Surg. Res. 2022. V. 17. P. 365. https://doi.org/10.1186/s13018-022-03247-6
- Zhang Q., Sun C., Liu X. et al. Mechanism of immune infiltration in synovial tissue of osteoarthritis: A gene expression-based study // J. Orthop. Surg. Res. 2023. V. 18. P. 58. https://doi.org/10.1186/s13018-023-03541-x
- Xia D., Wang J., Yang S. et al. Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies // Medicine (Baltimore). 2023. V. 102. https://doi.org/10.1097/MD.0000000000035355
- Xu L., Wang Z., Wang G. Screening of biomarkers associated with osteoarthritis aging genes and immune correlation studies // Int. J. Gen. Med. 2024. V. 17. P. 205–224. https://doi.org/10.2147/IJGM.S447035
- Cornec A., Poirier E.Z. Interplay between RNA interference and transposable elements in mammals // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1212086
- Cho J., Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge // eLife. 2017. V. 6. https://doi.org/10.7554/eLife.30038
- Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425. https://doi.org/https://doi.org/ 10.1038/nsmb.2799
- Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46. P. 132–134. https://doi.org/https://doi.org/ 10.1016/j.devcel.2018.06.022
- Playfoot C.J., Sheppard S., Planet E., Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development // RNA. 2022. V. 28. P. 1157–1171. https://doi.org/10.1261/rna.079100.122
- McCue A.D., Nuthikattu S., Slotkin R.K. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs // RNA Biol. 2013. V. 10. P. 1379–1395. https://doi.org/10.4161/rna.25555
- Lee D.H., Bae W.H., Ha H. et al. Z-DNA-containing long terminal repeats of human endogenous retrovirus families provide alternative promoters for human functional genes // Mol. Cells. 2022. V. 45. P. 522–530. https://doi.org/10.14348/molcells.2022.0060
- Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as a effector protein in RNA-directed DNA methylation in human cells // Front. Genet. 2019. V. 10. P. 645. https://doi.org/10.3389/fgene.2019.00645
- Tristán-Ramos P., Rubio-Roldan A., Peris G. et al. The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition // Nat. Commun. 2020. V. 11. P. 5712. https://doi.org/10.1038/s41467-020-19430-4
- Peng S., Yan Y., Li R. et al. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway // Ann. N. Y. Acad. Sci. 2021. V. 1503. P. 48–59. https://doi.org/10.1111/nyas.14590
- Dhahbi J.M., Atamna H., Boffelli D. et al. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence // PLoS One. 2011. V. 6. https://doi.org/10.1371/journal.pone.0020509
- Lu M.Y., Yang Y.H., Wu X. et al. Effect of needle-knife on chondrocyte apoptosis of knee joint in rabbits with knee osteoarthritis based on CircSERPINE2-miR-1271-5P-ERG axis // Zhongguo Zhen Jiu. 2023. V. 43. P. 447–453. https://doi.org/10.13703/j.0255-2930.20220411-k0001
- Xie W.P., Ma T., Liang Y.C. et al. Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis // Zhongguo Zhong Yao Za Zhi. 2023. V. 48. P. 4843–4851. https://doi.org/10.19540/j.cnki.cjcmm.20230510.708
- Ju C., Liu R., Zhang Y. et al. Exosomes may be the potential new direction of research in osteoarthritis management // Biomed. Res. Int. 2019. V. 3. https://doi.org/10.1155/2019/7695768
- Qin W.J., Wang W.P., Wang X.B. et al. MiR-1290 targets CCNG2 to promote the metastasis of oral squamous cell carcinoma // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 10332–10342. https://doi.org/10.26355/eurrev_201912_19671
- Noren Hooten N., Fitzpatrick M., Wood W.H 3rd et al. Age-related changes in microRNA levels in serum // Aging (Albany NY). 2013. V. 5. P. 725–740. https://doi.org/10.18632/aging.100603
- Xie Y., Zhang Y., Liu X. et al. miR-151-5p promotes the proliferation and metastasis of colorectal carcinoma cells by targeting AGMAT // Oncol. Rep. 2023. V. 49. P. 50. https://doi.org/10.3892/or.2023.8487
- Wang Y., Yu C., Zhang H. Lipopolysaccharides-mediated injury to chondrogenic ATDC5 cells can be relieved by Sinomenine via downregulating microRNA-192 // Phytother. Res. 2019. V. 33. P. 1827–1836. https://doi.org/10.1002/ptr.6372
- Sataranatarajan K., Feliers D., Mariappan M.M. et al. Molecular events in matrix protein metabolism in the aging kidney // Aging Cell. 2012. V. 11. P. 1065–1073. https://doi.org/10.1111/acel.12008
- Smith-Vikos T., Liu Z., Parsons C. A serum miRNA profile of human longevity: Findings from the Baltimore Longitudinal Study of Aging (BLSA) // Aging (Albany NY). 2016. V. 8. P. 2971–2987. https://doi.org/10.18632/aging.101106
- Liu H., Luo J. miR-211-5p contributes to chondrocyte differentiation by suppressing Fibulin-4 expression to play a role in osteoarthritis // J. Biochem. 2019. V. 166. P. 495–502. https://doi.org/10.1093/jb/mvz065
- Liu Y., Zhang Y. Hsa_circ_0134111 promotes osteoarthritis progression by regulating miR-224-5p/CCL1 interaction // Aging (Albany NY). 2021. V. 13. P. 20383–20394. https://doi.org/10.18632/aging.203420
- Chen H., Chen F., Hu F. et al. MicroRNA-224-5p nanoparticles balance homeostasis via inhibiting cartilage degeneration and synovial inflammation for synergistic alleviation of osteoarthritis // Acta Biomater. 2023. V. 167. P. 401–415. https://doi.org/10.1016/j.actbio.2023.06.010
- Francisco S., Martinho V., Ferreira M. et al. The role of microRNAs in proteostasis decline and protein aggregation during brain and skeletal muscle aging // Int. J. Mol. Sci. 2022. V. 23. P. 3232. https://doi.org/10.3390/ijms23063232
- Beyer C., Zampetaki A., Lin N.Y. et al. Signature of circulating microRNAs in osteoarthritis // Ann. Rheum. Dis. 2015. V. 74. e18. https://doi.org/10.1136/annrheumdis-2013-204698
- Morsiani C., Bacalini M.G., Collura S. et al. Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down syndrome // Mech. Ageing Dev. 2022. V. 206. https://doi.org/10.1016/j.mad.2022.111691
- Zhou S.L., Hu Z.Q., Zhou Z.J. et al. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis // Hepatology. 2016. V. 63. P. 1560–1575. https://doi.org/10.1002/hep.28445
- Costa V., De Fine M., Carina V. et al. How miR-31-5p and miR-33a-5p regulates SP1/CX43 expression in osteoarthritis disease: preliminary insights // Int. J. Mol. Sci. 2021. V. 22. P. 2471. https://doi.org/10.3390/ijms22052471
- Dellago H., Preschitz-Kammerhofer B., Terlecki-Zaniewicz L. et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan // Aging Cell. 2013. V. 12. P. 446–458. https://doi.org/10.1111/acel.12069
- Ali S.A., Espin-Garcia O., Wong A.K. et al. Circulating microRNAs differentiate fast-progressing from slow-progressing and non-progressing knee osteoarthritis in the Osteoarthritis Initiative cohort // Ther. Adv. Musculoskelet. Dis. 2022. V. 14. https://doi.org/10.1177/1759720X221082917
- Dalmasso B., Hatse S., Brouwers B. et al. Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy // BMC Cancer. 2018. V. 18. P. 1014. https://doi.org/10.1186/s12885-018-4920-6
- Lin Z., Ma Y., Zhu X. et al. Potential predictive and therapeutic applications of small extracellular vesicles-derived circPARD3B in osteoarthritis // Front. Pharmacol. 2022. V. 13. https://doi.org/10.3389/fphar.2022.968776
- Paradowska-Gorycka A., Wajda A., Rzeszotarska E. et al. miR-10 and Its negative correlation with serum IL-35 concentration and positive correlation with STAT5a expression in patients with rheumatoid arthritis // Int. J. Mol. Sci. 2022. V. 23. P. 7925. https://doi.org/10.3390/ijms23147925
- Yang X., Tan J., Shen J. et al. Endothelial cell-derived extracellular vesicles target TLR4 via miRNA-326-3p to regulate skin fibroblasts senescence // J. Immunol. Res. 2022. V. 2022. P. 3371982. https://doi.org/10.1155/2022/3371982
- Wilson T.G., Baghel M., Kaur N. et al. Characterization of miR-335-5p and miR-335-3p in human osteoarthritic tissues // Arthritis Res. Ther. 2023. V. 25. P. 105. https://doi.org/10.1186/s13075-023-03088-6
- Xia S., Zhao J., Zhang D. et al. MiR-335-5p inhibits endochondral ossification by directly targeting SP1 in TMJ OA // Oral Dis. 2023. V. 20. https://doi.org/10.1111/odi.14736
- Raihan O., Brishti A., Molla M.R. et al. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain // Neuroscience. 2018. V. 390. P. 160–173. https://doi.org/10.1016/j.neuroscience.2018.08.003
- Duan Y., Yu C., Yan M. et al. m6A regulator-mediated RNA methylation modification patterns regulate the immune microenvironment in osteoarthritis // Front. Genet. 2022. V. 13. https://doi.org/fgene.2022.921256
- Zhang H., Yang H., Zhang C. et al. Investigation of microRNA expression in human serum during the aging process // J. Gerontol. A. Biol. Sci. Med. Sci. 2015. V. 70. P. 102–109. https://doi.org/10.1093/gerona/glu145
- ElSharawy A., Keller A., Flachsbart F. et al. Genome-wide miRNA signatures of human longevity // Aging Cell. 2012. V. 11. P. 607–616. https://doi.org/10.1111/j.1474-9726.2012.00824.x
- Shi F.L., Ren L.X. Up-regulated miR-374a-3p relieves lipopolysaccharides induced injury in CHON-001 cells via regulating Wingless-type MMTV integration site family member 5B // Mol. Cell. Probes. 2020. V. 51. https://doi.org/10.1016/j.mcp.2020.101541
- Feng L., Yang Z., Li Y. et al. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis // Mol. Ther. Nucleic Acids. 2022. V. 28. P. 328–341. https://doi.org/10.1016/j.omtn.2022.03.016
- Guo D., Ye Y., Qi J. et al. Age and sex differences in microRNAs expression during the process of thymus aging // Acta Biochim. Biophys. Sin. (Shanghai). 2017. V. 49. P. 409–419. https://doi.org/10.1093/abbs/gmx029
- Zhang W., Cheng P., Hu W. et al. Inhibition of microRNA-384-5p alleviates osteoarthritis through its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway by targeting SOX9 // Cancer Gene Ther. 2018. V. 25. P. 326–338. https://doi.org/10.1038/s41417-018-0029-y
- Li X., Wu J., Zhang K. et al. MiR-384-5p targets Gli2 and negatively regulates age-related osteogenic differentiation of rat bone marrow mesenchymal stem cells // Stem. Cells Dev. 2019. V. 28. P. 791–798. https://doi.org/10.1089/scd.2019.0044
- Zhang H., Xiang X., Zhou B. et al. Circular RNA SLTM as a miR-421-competing endogenous RNA to mediate HMGB2 expression stimulates apoptosis and inflammation in arthritic chondrocytes // J. Biochem. Mol. Toxicol. 2023. V. 37. https://doi.org/10.1002/jbt.23306
- Li G., Song H., Chen L. et al. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract // Exp. Cell. Res. 2017. V. 356. P. 20–27. https://doi.org/10.1016/j.yexcr.2017.04.002
- Chen Y.J., Chang W.A., Wu L.Y. et al. Identification of novel genes in osteoarthritic fibroblast-like synoviocytes using next-generation sequencing and bioinformatics approaches // Int. J. Med. Sci. 2019. V. 16. P. 1057–1071. https://doi.org/10.7150/ijms.35611
- Nidadavolu L.S., Niedernhofer L.J., Khan S.A. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress // Aging (Albany NY). 2013. V. 5. P. 460–473. https://doi.org/10.18632/aging.100571
- Zhao X., Wang T., Cai B. et al. MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1 // Am. J. Transl. Res. 2019. V. 11. P. 2232–2244.
- Li X., Song Y., Liu D. et al. MiR-495 promotes senescence of mesenchymal stem cells by targeting Bmi-1 // Cell Physiol. Biochem. 2017. V. 42. P. 780–796. https://doi.org/10.1159/000478069
- Wang Y., Su Q., Tang H. et al. Microfracture technique combined with mesenchymal stem cells inducer represses miR-708-5p to target special at-rich sequence-binding protein 2 to drive cartilage repair and regeneration in rabbit knee osteoarthritis // Growth Factors. 2023. V. 41. P. 115–129. https://doi.org/10.1080/08977194.2023.2227269
- Lee B.P., Buric I., George-Pandeth A. et al. MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice // Sci. Rep. 2017. V. 7. https://doi.org/10.1038/srep44620
- Kwak Y.H., Kwak D.K., Moon H.S. et al. Significant changes in serum microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: potential prognostic biomarkers // Diagnostics (Basel.). 2021. V. 11. P. 258. https://doi.org/10.3390/diagnostics11020258
- Behbahanipour M., Peymani M., Salari M. et al. Expression profiling of blood microRNAs 885, 361, and 17 in the Patients with the Parkinson’s disease: Integrating interatction data to uncover the possible triggering age-related mechanisms // Sci. Rep. 2019. V. 9. P. 13759. https://doi.org/10.1038/s41598-019-50256-3
- Zhang Z.K., Li J., Guan D. et al. A newly identified lncRNA MaR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration // J. Cachexia Sarcopenia Muscle. 2018. V. 9. P. 613–626. https://doi.org/10.1002/jcsm.12281
- Chang L., Yao H., Yao Z. et al. Comprehensive analysis of key genes, signaling pathways and miRNAs in human knee osteoarthritis: based on bioinformatics // Front. Pharmacol. 2021. V. 12. https://doi.org/10.3389/fphar.2021.730587
- Alizadeh A.H., Lively S., Lepage S. et al. MicroRNAs as prognostic markers for chondrogenic differentiation potential of equine mesenchymal stromal cells // Stem Cells Dev. 2023. V. 32. P. 693–702. https://doi.org/10.1089/scd.2022.0295
- Díaz-Prado S., Cicione C., Muiños-López E. et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes // BMC Musculoskelet. Disord. 2012. V. 13. P. 144. https://doi.org/10.1186/1471-2474-13-144
- Ipson B.R., Fletcher M.B., Espinoza S.E., Fisher A.L. Identifying exosome-derived microRNAs as candidate biomarkers of frailty // J. Frailty Aging. 2018. V. 7. P. 100–103. https://doi.org/10.14283/jfa.2017.45
- Luo J., Liu L., Shen J. et al. MiR-576-5p promotes epithelial-to-mesenchymal transition in colorectal cancer by targeting the Wnt5a-mediated Wnt/β-catenin signaling pathway // Mol. Med. Rep. 2021. V. 23. P. 94. https://doi.org/10.3892/mmr.2020.11733
Дополнительные файлы
